ABSTRACT

In a connected weighted graph, consider deleting the edges one at a time, in some order, such that after every deletion the remaining edges are still connected. We study the problem of finding such a deletion sequence that maximizes the sum of the weights of the edges in all the distinct graphs generated: the weight of an edge is counted in every graph that it is in. This effectively asks for the high-weight edges to remain in the graph as long as possible, subject to connectivity. We apply this to road network generalization in order to generate a sequence of successively more generalized maps of a road network so that these maps go well together, instead of considering each level of generalization independently. In particular, we look at the problem of making a road segment selection that is consistent across zoom levels.

We show that the problem is \textit{NP}-hard and give an integer linear program (ILP) that solves it optimally. Solving this ILP is only feasible for small instances. Next we develop constant-factor approximation algorithms and heuristics. We experimentally demonstrate that these heuristics perform well on real-world instances.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems—\textit{Sequencing and scheduling}; H.2.8 [Database Management]: Database Applications—\textit{Spatial databases and GIS}

Keywords
map generalization, optimization, scheduling

1. INTRODUCTION

Map generalization is the process of deriving a map of a smaller scale from a given map. During this process, some map objects are eliminated; others are aggregated or simplified. A high degree of automation has been achieved for the generalization of static topographic maps, which national mapping agencies typically produce at a small number of different scales [5]. For interactive maps that allow for continuous zooming, however, many problems of automatic generalization are still open. Generally, the aim is to avoid sudden changes caused by generalization during zooming [22].

In this paper, we address interactive maps of road networks in which the road segments successively disappear when a user zooms out. To this end, we represent a road network as a graph whose edges (that is, the straight-line segments of the polylines representing the roads) are weighted by an importance measure, which can reflect road category or relevance for navigation. We present algorithms that, given a weighted graph (a road network at the largest scale) decide in which order the edges of the graph are removed from the map when scale decreases. The results of our algorithms could be used to set up data structures that provide users with maps of arbitrary scales. That is, similar to Van Oosterom and Meijers [23], who deal with the generalization of polygonal maps, we suggest computing the sequence of edge removals once and reusing it each time a user queries a map. We assume that, once we have computed the sequence of edge removals, we can map every edge removal to a scale by following existing guidelines about the relationship between the scale and the number of map objects selected for that scale [19]. Furthermore, to achieve the impression of a continuous transformation process, we suggest combining our selection method with existing algorithms for line simplification and morphing [4, 15].

An important constraint when generalizing geographic networks is that a connected network must be kept connected [14]. Therefore, simply removing the edges in increasing order of importance is not an acceptable solution to our problem. Nevertheless, we generally should try to avoid the removal of important edges for as long as possible. We take this concern into account by measuring the quality of the map (at any fixed scale) with the total weight of all displayed edges. Then, we ask for a sequence of edge removals that maximizes the sum of weights over all distinct maps that are shown between the original map and the empty map (which finally will be shown at a very small scale), while requiring that at each scale the displayed graph is connected. See Figs. 1 and 10 for some example snapshots computed using our algorithms.

Related Work.

Map generalization can be modeled with a set of constraints, each of which is concerned either with the legibility of the output map or with the preservation of character-
After 2480 edge deletions (G_{2480}), we do not select all vertices of the input graph. Therefore, for every however, that for a generalized road network we need not an acceptable degree of completeness is reached. We argue, G vertices of T travel time, Mackaness and Beard [14] have suggested generalized connectivity [1,3,12,14,27]. Given a connected graph that represents a geographic network and whose edges are weighted by stroke, that is, allowing edges to be removed only from the two ends of a stroke. This connectivity constraint has been used before [20] but not for continuously zoomable maps. However, since the problem of removing the edges in an optimal order is new, we focus on the more common definition of connectivity.

One of our algorithms is based on results from scheduling theory. We observe that our objective function has been studied under the names total weighted completion time and linear delay penalties. Subject to arbitrary precedence constraints between jobs, minimizing the total weighted completion time is NP-hard [13], but there exist polynomial-time algorithms for several restricted classes of precedence constraints, for example for rooted forests [11]. Our connectivity constraint has not been studied in this setting.

Our Contribution.

When a sequence of maps is shown during a zoom operation, what criteria are essential for the quality of that sequence? According to those criteria, how can we efficiently compute a map sequence that is (close to) optimal? Those
two questions are almost completely unexplored in the map generalization literature. Computing a well-generalized map by optimization is rather common, of course, but a sequence of well-generalized maps is not necessarily the same as a good sequence of maps. New approaches are needed that ensure consistency and aggregate quality across zoom levels, while satisfying constraints at every scale. We consider our work a small but crucial step in that direction.

In particular, we present a new approach to the problem of finding a good sequence of edge removals in order to define how a map of a road network becomes successively more generalized when the map’s scale decreases. We optimize a global objective function that reflects the completeness of the map, aggregated over all scales, and ensures that, at every single scale, the displayed road network is connected.

We define the problem of finding an optimal removal sequence formally (Sect. 2), give an efficient greedy heuristic (Sect. 3), and prove that the problem is \(\mathcal{NP} \)-hard (Sect. 4). Then, we present an exact method based on integer programming (Sect. 5) and two different approaches that both have an approximation guarantee of 1/3: one based on balanced tree partitions (Sect. 6) and one that uses an existing global objective function that reflects the completeness of the map, aggregated over all scales, and ensures that, at every single scale, the displayed road network is connected.

Though we focus on the application to map generalization here, our algorithm TreeSchedule (Sect. 7) can also be seen in a more general scheduling context.

2. PROBLEM DEFINITION

We define the problem of computing an optimal sequence of edge removals as follows.

Problem 1 (EdgeScheduling). Given a connected graph \(G = (V, E) \) with \(m \) edges and edge weights \(w: E \to \mathbb{R}_{\geq 0} \), find a permutation \(S = (e_1, \ldots, e_m) \) of \(E \) such that

- for \(i = 0, \ldots, m - 1 \), the subgraph \(G_i \subseteq G \) induced by the edges with index larger than \(i \) is connected, and
- \(Q(S) := \sum_{i=0}^{m-1} W(G_i) \) is maximized, where \(W(G_i) := \sum_{j=i+1}^{m} w(e_j) \) is the total weight of \(G_i \).

In other words, \(G_i \) needs to be connected and arises from \(G \) by deleting the edges \(e_1, \ldots, e_i \) together with all resulting degree-0 vertices. Hence, from now on we use the term “deleting an edge \(e \)” to mean removing \(e \) and updating the vertex set \(V \) such that it only keeps the vertices with at least one incident edge.

Note that \(G_0 = G \) and that \(G_{m-1} \) contains only one edge, thus for \(i = 0 \) and \(i = m - 1 \) the graph \(G_i \) is trivially connected. When measuring the quality \(Q(S) \) of a solution \(S \), we do not include the weight of \(G_0 \) since \(W(G_0) \) is identical for all possible solutions. Obviously, excluding \(W(G_0) \) from the objective function does not have an influence on whether or not a solution is optimal. It can have an impact on approximation factors, however.

3. A GREEDY HEURISTIC

To better understand the problem, we introduce a simple greedy algorithm (Algorithm 1), which we will refer to as the greedy algorithm. It iteratively deletes a minimum-weight admissible edge from the current graph \(G = (V, E) \), where an edge \(e \) is admissible if \(G \) remains connected after deleting \(e \) or if \(e \) is the only edge in \(G \).

Algorithm 1: Greedy Selection

1. Let \(S \) be a new array of \(m = |E| \) edges.
2. for \(i = 1 \) to \(m \) do
3. \(S[i] \) is a minimum-weight admissible edge in \(G \)
4. Delete edge \(S[i] \)
5. return \(S \)

\[Q(S) = (k-1) + \ldots + 1 + (k+k^2) \cdot 2 = \frac{5}{2} k^2 + \frac{3}{2} k. \]

Now, consider the solution \(S^* \) obtained by deleting the edges in the reverse order, that is, by always picking the rightmost edge in Fig. 2. This solution has quality

\[Q(S^*) = (k^2 + 1) \cdot k + [(k-1) + \ldots + 1] = k^3 + \frac{1}{2} k^2 + \frac{1}{2} k \]

which is strictly better than \(S \) if \(k > 2 \).

As \(Q(S^*) \) is a polynomial of higher degree than \(Q(S) \), the ratio \(Q(S^*) / Q(S) \) exceeds any constant-factor bound if we choose \(k \) large enough. Therefore, the solution \(S \) of the greedy algorithm can be arbitrarily bad compared to \(S^* \).

This worst-case quality notwithstanding, the greedy algorithm is of practical interest. We have seen experimentally that it tends to give good results on realistic instances (Sec. 8). Furthermore, with proper data structures it can be implemented to run efficiently.

Theorem 1. Algorithm GreedySelection computes a feasible solution. Its objective value may be arbitrarily far from the optimum. The algorithm can be implemented to run in \(O(m \log^2 m) \) time.

Proof. The correctness of the algorithm is evident, and we discussed the non-approximation above. It remains to show that the claimed runtime can be achieved. Line 3 of the pseudocode is crucial; we handle it in \(O(\log^2 m) \) time. Then the claimed bound follows.

Consider the remaining graph during an iteration of the loop. An edge \(e = uv \) is admissible if, after deleting \(e \), the graph still has a path between \(u \) and \(v \). The edge is also admissible if at least one of \(u \) and \(v \) has degree 1; then \(e \) is a dangling edge and can be deleted without harming connectivity. The latter can be tested in constant time. For the former we use the dynamic connectivity data structure.
Then this cannot happen on both sides of the edge before the deletion of its endpoints has its degree reduced to one, where the edge on hold. In either case, the deletion requires amortized time, but cannot branch. We mark it as being on hold and continue with the next edge.

Whenever we do delete an edge, we check whether either of its endpoints has its degree reduced to one, where the neighboring edge is on hold. If this happens, it was not admissible before the deletion of e, but is admissible now. This cannot happen on both sides of e, so e' is well-defined. Then e' is the minimum-weight admissible edge in the new graph: it is the only newly-admissible edge and its weight must be minimum since we tried to delete it before. This process can cascade along a path, but cannot branch.

The runtime follows from the fact that each edge is considered for deletion at most twice—once for “normal” deletion, and possibly once more when it becomes a dangling edge on hold. In either case, the deletion requires amortized time.

See Fig. 1 for a solution computed using this algorithm; the data set is described in Sec. 8. Note in Fig. 1(b) that the edge deletions mostly follow the road classes, but that in the north-east a few low-weight edges remain. This is due to the connectivity constraint: these edges form a bridge with a high amount of weight on both sides. They remain even in Fig. 1(c).

We note that Aliakbarian [1] proposes an iterative algorithm that is somewhat similar to GreedySelection. This algorithm first stores the edges in a queue, sorted by weight. In every iteration, the algorithm takes an edge from the queue, starting with the least important edge. If the selected edge is admissible, the algorithm deletes it from the graph. Otherwise, the algorithm reinserts the edge at the back of the queue. In Fig. 2, for example, it would attempt to delete the zero-weight edges first, but without success. Depending on how the algorithm resolves ties, it may then delete all unit-weight edges, then the edge of weight two, and finally the zero-weight edges. This means that on this instance, the algorithm performs even worse than GreedySelection, as it keeps the zero-weight edges until the very end. We also note that a straightforward implementation of Aliakbarian’s method would take $\Omega(m^2)$ time in the worst case. Using the dynamic-connectivity data structure, this can be improved to $O(m^2\log^2 m)$, but it can occur that the algorithm actually performs quadratically-many iterations.

4. NP-HARDNESS

We now analyze the computational complexity of EdgeScheduling. We show that it is \mathcal{NP}-hard.

Theorem 2. Given an instance $I = (G, w)$ to the EdgeScheduling problem and an integer bound Q_{min}, the decision problem of whether I has a solution S with $Q(S) \geq Q_{min}$ is \mathcal{NP}-complete, even if G is planar.

Our proof is by reduction from SteinerTreeInPlanarGraphs, which is known to be \mathcal{NP}-complete [6]. We abbreviate it as P-SteinerTree.
\[
\begin{align*}
\text{Maximize} & \quad \sum_{e \in E} \sum_{d=1}^{m} (d - 1) \cdot w(e) \cdot x_{ed} & (1) \\
\sum_{d=1}^{m} x_{ed} &= 1 & \forall e \in E & (2) \\
\sum_{e \in E} x_{ed} &= 1 & \forall 1 \leq d \leq m & (3) \\
\sum_{e' \in N(e)} \sum_{d'=d+1}^{m} x_{e'd'} \geq x_{ed} & \forall e \in E, 1 \leq d \leq m & (4) \\
x_{ed} & \text{ binary} & \forall e \in E, 1 \leq d \leq m & (5)
\end{align*}
\]

Figure 5: An integer linear program for Edge-Scheduling.

that any optimal solution with at most \(\beta \) Steiner edges has higher quality than any optimal solution with more than \(\beta \) Steiner edges. This gives a value \(Q_{\text{min}} \) that allows us to decide whether \(G \) has a Steiner tree of a certain size. Picking \(W := m + |R| + 1 \) and \(M := (|R| + m) \cdot |R| \cdot W + 1 \) suffices. Note that the constructed instance has polynomial size. \(\square \)

5. INTEGER LINEAR PROGRAMMING

Since the EdgeScheduling problem is \(\mathcal{NP} \)-hard, it is natural to consider integer linear programming. This will allow us to compute optimal solutions, though this will only be feasible for small instances. This serves a double purpose. First of all, it allows us to verify that our problem statement makes sense: is an optimal solution to our optimization problem actually a good sequence of maps? Secondly, having optimal solutions to (small) instances enables us to experimentally investigate the quality of our heuristics and approximation algorithms.

A solution to the EdgeScheduling problem is a permutation of the graph's edges: we seek an indexing \(\langle e_1, \ldots, e_m \rangle \) of the edges as described in the problem definition (Sec. 2). We call these indices "deletion indices."

The integer linear program is given in Fig. 5. We have a binary decision variable \(x_{ed} \) for every edge \(e \in E \) and every possible deletion index \(1 \leq d \leq m \): if \(x_{ed} = 1 \), then \(e \) is the \(d \)-th edge to be deleted. The objective function can be cleanly expressed using these variables (Eq. 1), where we note that the weight of \(G_0 \) is correctly ignored. We require that every edge is deleted exactly once (Eq. 2) and that every deletion index occurs exactly once (Eq. 3). Finally, we ensure connectivity at every arising subgraph in the deletion sequence using the following constraint: for every edge \(e \) (except the one that is deleted last) it must hold that one of its adjacent edges is deleted later—otherwise edge \(e \), directly before its deletion, would be disconnected from the final edge. This constraint is implemented in Ineq. (4), where we use \(N(e) \) to denote the set of edges adjacent to \(e \).

6. CONSTANT-FACTOR APPROXIMATION

We will now discuss a polynomial-time algorithm that, in contrast to the aforementioned greedy approach, guarantees a constant approximation ratio. Our ultimate algorithm will achieve a ratio of \(1/3 \) in the worst case, but in order to describe it, we will start with somewhat weaker algorithms. The following observation is essential.

Theorem 3 (Wu et al. [25]). Let \(T \) be a tree. We can edge partition \(T \) into \(k \) subtrees, for \(k = 2, 3, 4 \), such that the ratio between the number of edges in the smallest and the largest subtree is at most 2. This partition can be found in linear time.

We note that, at the cost of raising the edge ratio to 3, Wu et al. also present polynomial solutions for larger \(k \). Those are, however, not readily applicable to our approaches. Furthermore observe that there are indeed instances where the ratio 2 is unavoidable.

In our problem, we are given a general weighted graph \(G \), rather than a tree. Therefore, we will first construct a tree \(T_G \) from \(G \) with the same number of edges: cf. Fig. 6. Start with \(T_G \) as any spanning tree of \(G \). For every edge \(uv \in E(G) \) not initially in \(T_G \), we add a new vertex \(v' \) together with the edge \(uv' \) into \(T_G \). Observe that this gives a 1-to-1 correspondence between edges of \(T_G \) and \(G \).

6.1 Approximation via 2-partition

We start very naively, by using Theorem 3 to obtain an edge partition of \(T_G \) into two connected components such that the larger component holds at most twice as many edges as the smaller. This induces an edge partition \((F_1 : F_2) \) in \(G \) with the same property. For \(j = 1, 2 \), let \(H_j \) denote the subgraph of \(G \) induced by \(F_j \). Since each \(H_j \) is connected, we can generate a solution graph sequence by first deleting all edges of one of those subgraphs, and only then picking edges of the other. We say we eat one component before the other. Thereby, we do not care much about the precise deletion sequence within the component \(H_j \), \(j = 1, 2 \), as long as the remaining graph (not only the component) remains connected after each deletion step.

Let \(w_j := W(H_j) \) and \(c_j := |F_j| \) be the weight and the number of edges of the two components, respectively. If we start with eating \(H_1 \), we will have at least \(c_1 \) subgraphs in our sequence, namely \(G_1, \ldots, G_{c_1} \), that contain the whole component \(H_2 \). Hence, each \(G_i \), \(1 \leq i \leq c_1 \), has weight at least \(w_2 \), and the overall solution will have an objective value of at least \(c_1 w_2 \). By simply choosing the better option between eating \(H_1 \) or \(H_2 \) first, we can guarantee a solution value of at least \(\text{APX} := \max(c_1 w_2, c_2 w_1) \).

Theorem 4. The above algorithm achieves an approximation ratio of at least \(2/3 \) and requires \(O(m) \) time.

Proof. Let \(v \) be any vertex contained in both \(H_1 \) and \(H_2 \). Observe that we do not care how the individual components \(H_1 \) are eaten, as long as, when eating the first of the two component, the vertex \(v \) is retained until the end. This is trivially achieved, for example by a post-order traversal, resulting in the given running time.
6.2 Approximations via 3- and 4-partitions

We can reuse the above ideas to obtain algorithms based on 3- and 4-partitions. However, we have to be more careful in our bounding arguments.

Similarly to before, consider a k-partition ($k = 3, 4$) of T_G subject to Theorem 3, and let F_1, \ldots, F_k be the induced partition edge sets of G. For $j = 1, \ldots, k$, let H_j, $w_j := W(H_j)$, and $c_j := |F_j|$ be the connected edge-induced subgraph, its weight, and its edge cardinality, defined analogously to above.

Consider the auxiliary graph H on vertices n_1, \ldots, n_k. Each vertex n_a ($a = 1, \ldots, k$) in H represents a component H_a. Two vertices n_a, n_b are adjacent if and only if there exists some vertex in G that is incident to an edge of F_a and to an edge of F_b. Since G is connected, H is connected as well. Our algorithms will, again, eat our graph componentwise. We may only eat a component H_a if H remains connected after removing n_a.

First, let us concentrate on $k = 3$. Then H is either a cycle (triangle) or a path. In the former case, we can start with eating any component. In the latter case, assume w.l.o.g. that n_2 is the inner vertex. We may start with eating either H_1 or H_3. Afterwards, we may choose freely among the two remaining components. Only looking at the values of w_j, c_j for $j = 1, 2, 3$, our algorithm will decide on the best eating order of the three components. There are at most six different orders to consider.

Theorem 5. The algorithm that eats the given graph G componentwise in the optimal order, based on a 3-partition subject to Theorem 3, achieves an approximation ratio of at least $3/10$ and requires $O(m)$ time.

Proof. Since $k = 3$ is a constant, there are only a constant number of eating orders (6, in fact) to check. Eating a single component can again be done arbitrarily, and hence runs in the claimed time for the disjoint components. We may still assume that the optimum solution OPT is (arbitrarily close to) mW.

It suffices to consider the four available eating orders when H is a path (w.l.o.g. the inner vertex is labeled n_2). If any of those attain $\frac{2}{3}OPT$, the solution for cyclic H is also at least as good. Assume we eat the components in order (H_1, H_2, H_3). Then, the weight w_2 is retained for the first c_1 many graphs in the solution sequence. The weight w_3 is even retained for at least $c_1 + c_2$ subgraphs. Our algorithm will hence find a solution of objective value at least

$$\zeta := \max \left\{ \begin{array}{c} c_1w_2 + (c_1 + c_2)w_3, \\ c_1w_3 + (c_1 + c_3)w_2, \\ c_2w_2 + (c_2 + c_3)w_3, \\ c_2w_3 + (c_3 + c_1)w_1, \\ c_3w_1 + (c_3 + c_2)w_3, \end{array} \right\}$$

subject to

$$c_1 + c_2 + c_3 = m, \quad w_1 + w_2 + w_3 = W,$$
$$c_0 \leq 2c_1, \quad c_a, w_a \geq 0 \quad \forall a, b \in \{1, 2, 3\}.$$
This value is attained, e.g., by ζ_{path} for $c_1 = c_4 = \frac{1}{3}m$, $c_2 = c_3 = \frac{1}{2}m$, $w_1 = w_4 = \frac{1}{2}W$, $w_2 = w_3 = 0$.

One may wonder if the above strategies can be extended to k-partitions with $k \geq 5$. We only know that an edge ratio of 3 (instead of 2) is achievable for such partitions. This drop seems to always result in worse approximation ratios than the one for the 4-partition.

7. TREE SCHEDULING

We now develop another approximation algorithm, which we call tree scheduling since it is based on a more careful consideration of the tree T_G. A version of this algorithm matches our best approximation factor, 1/3, and is exact on trees; recall that the greedy algorithm is arbitrarily bad even on paths (Fig. 2). We also present a more efficient version that works well in practice, but for which we only prove approximation factor 2/9.

A motivation for this more complicated algorithm is that the algorithms from the preceding section may give results that are unreasonable from a practical perspective: they delete some part of the graph completely before moving on to another part of the graph. When applied to road segment selection, this could mean (depending on T_G) that we completely delete one half of the map before deleting even the least important segment in the other half. The tree scheduling algorithm is more sophisticated in that respect, and we have determined experimentally that on realistic instances it approximates very well (see Sec. 8).

The starting point for this algorithm is to look at the EDGE-SCHEDULING problem in terms of scheduling theory: consider the edges of the graph as jobs to be processed on a single machine; processing the job corresponds to deleting the edge. Then our objective function is known as total weighted completion time or linear delay penalties (see the related work section). To the best of our knowledge, our connectivity constraint has not been studied in the scheduling literature. There is, however, much work on various other classes of precedence constraints, i.e., the requirement that some job must be processed before job j. A job can only be processed once all jobs that must precede it have been processed. For a set of such constraints, the precedence graph has an arc (i, j) if job i is constrained to go before job j. If this graph is a rooted forest, then a schedule that optimizes our objective function can be determined in polynomial time using Horn’s algorithm [11]. An implementation that runs in $O(n \log n)$ time on n jobs is given by Lawler [13].

On trees, we can model the connectivity constraint of EDGE-SCHEDULING using a set of precedence constraints. Let T be a tree and r an edge in T. Perform a graph search of the edges of T, starting at r. Since G is a tree, this gives a well-defined parent relation on the edges. This relation is a tree, directed toward r; call it $P(T, r)$, cf. Fig. 7. Interpreting $P(T, r)$ as a set of precedence constraints on the edges, it is equivalent to the connectivity constraint under the assumption that r is deleted last: if indeed we delete r last, then for any edge e, all its descendants in $P(T, r)$ must be deleted before we can delete e.

Theorem 7. EDGE-SCHEDULING on a tree $T = (V, E)$ can be solved optimally in $O(|V|^2 \log |V|)$ time.

Proof. Let r be any edge in T, and assume it is deleted last in an optimum solution. Then $P(T, r)$, computable in linear time, exactly models the connectivity constraint. An optimal scheduling of $P(T, r)$, obtained by Lawler’s algorithm, gives an optimal solution to EDGE-SCHEDULING. Running this subalgorithm for each possible choice of r achieves the theorem.

Now we consider general graphs. First we construct a tree T_G as in the preceding section. Then we compute schedules based on $P(T_G, r)$, for one or more root edges r. This clearly guarantees connectivity of the remaining graph at every step, but forcing connectivity along T_G introduces unintended restrictions on the schedule: by taking this step we lose optimality (but recall that the full problem is NP-hard). We could test every possible root, like in Theorem 7.

Theorem 8. Testing all possible roots, the above algorithm runs in $O(m^3 \log m)$ time and has an approximation ratio of at least 1/3 on general graphs.

Proof. Construct T_G as before; this can be done in linear time. Construct $P(T_G, r)$ for every edge $r \in E$. Solve each of these scheduling problems and return the best result. Using Lawler’s algorithm gives the claimed running time.

Now consider the solution found by the approximation algorithm in Theorem 6, which has approximation factor at least 1/3. Let r be the edge that it deletes last. Since this solution keeps T_G connected and ends at r, it satisfies $P(T_G, r)$; it is otherwise arbitrary. The tree scheduling algorithm finds the optimal scheduling under these constraints. Hence, when the correct edge r is used, the algorithm’s approximation factor is at least as good. The algorithm tries all r.

We now consider a faster variant of the algorithm that checks only a single root; we can efficiently find a root that results in approximation ratio 2/9.

Theorem 9. Using a single root found in linear time, the above algorithm runs in $O(m \log m)$ time and has an approximation ratio of at least 2/9 on general graphs.

Proof. Consider the factor-2/9 approximation algorithm from Theorem 4. It uses a balanced edge partition $(F_1 : F_2)$ of T_G and decides, based on the number of edges and the total weight in each, to eat one of F_1 or F_2 completely before the other. This is what gives the approximation guarantee; within F_1 and F_2, the order of deletion is arbitrary. W.l.o.g. let F_1 be the set of edges it eats first and let r be any edge in F_2 that has a neighboring edge in F_1. Then $P(T_G, r)$ allows a solution that eats F_1 before F_2; the algorithm finds, in fact, the optimal solution subject to $P(T_G, r)$, hence its approximation factor is at least as good. The runtime follows immediately, since we test only one root and this root can be found in linear time (Theorem 3).
8. COMPUTATIONAL EXPERIMENTS

We have implemented GreedySelection, the tree scheduling algorithm and the integer linear program (ILP) in C++, using CPLEX 12.6 for solving integer linear programs. Runtimes were measured on an Intel® Core™ i5-2520M CPU at 2.5 GHz; memory usage was not an issue.

For the tree scheduling algorithm, we get T_{G} by taking a maximum-weight spanning tree and extending it to contain all edges (as in Fig. 6). Unless otherwise noted, our implementation tests only a single root: the heaviest edge in the input is used for r when constructing $P(T_{G}, r)$. Then the approximation ratio $2/9$ from Theorem 9 is not guaranteed, but the experiments show that this choice of r works well. We call this implementation TreeSchedule.

The implementation contains two departures from the earlier description of the algorithms. Both changes result in a simpler implementation with a worse asymptotic runtime, but do not affect the output. Since we observe a low runtime in practice, we would recommend this implementation unless the runtime is explicitly found to be problematic. We have implemented GreedySelection without the dynamic connectivity data structure: we simply check connectivity via depth-first search. We have implemented TreeSchedule using Horn’s algorithm [11] instead of Lawler’s algorithm [13].

In this paper we present experiments using two real-world data sets. The Wuerzburg data set is a crop of the Open-StreetMap road network of Würzburg, Germany, and consists of 2995 road segments. The Dallas data set is the largest connected component in the City of Dallas GIS Services’ road network of Dallas, Texas. This data set contains 3×10^5 road segments.

In order to determine weights for the road segments, we have used either betweenness centrality or PageRank, as indicated per experiment; these are standard choices for scoring the importance of road segments [12, 21]. It is also common to generalize based on road class information, which is available in our data sets. We have multiplied the weight of some road segments by a factor of 3 or 5 based on the road class. In this way, the optimization problem asks for the lower-class roads to be deleted first, unless they are structurally important (either for the connectivity constraint or because of high centrality). Though somewhat arbitrary, this choice of weights does not seem particularly objectionable and gives reasonable results.

Dallas and Wuerzburg are much too large to solve optimally using the integer linear program. We have used the following procedure to generate realistic small data sets from a large data set. We start at a random vertex in the road network and perform a breadth-first search until a desired number of vertices is reached. We take the road network induced by these vertices (which will have some more road segments than vertices). We generated 150 such random subgraphs of Wuerzburg with 40 vertices, a further 50 subgraphs with 50 vertices, and 15 subgraphs with 60 vertices.

First we consider the integer linear program. Fig. 8(a) shows a histogram of runtimes on the random 40-vertex subgraphs of Wuerzburg. The average runtime is 4.5 s, with a few outliers up to 90 s. This increases to an average of 16.8 s for the 50-vertex instances and further to 118 s for the 60-vertex instances. By then, runtimes of multiple minutes are common. Results on Dallas are similar, though slightly faster because the network is sparser, resulting in graphs with fewer edges.

Next, we consider GreedySelection and TreeSchedule. On the small instances from the preceding paragraph, both algorithms require virtually no time. Figs. 8(b) and 8(c) show a histogram of their observed approximation ratio, which we can determine since the ILP gave us an optimum solution. Both algorithms give very good solutions on these instances, always staying within 99% of the optimum. We also see that, of the two algorithms, TreeSchedule gives better solutions, even finding the optimum in 85% of the instances.

The tree scheduling algorithm involves the choice of a root. Depending on the chosen root, it performs better or worse than the greedy algorithm, but there is almost always a root that performs at least as well. A typical situation is displayed in Fig. 9(a), where GreedySelection achieves an approximation quality of 99.5%; the tree scheduling algorithm gives better solutions only for about 1/3 of the possible roots. However, simply picking the heaviest edge in the graph as the root turns out to dominate the greedy approach in all the 40-vertex graphs tested (150 graphs) and in 98% of the 50-vertex graphs (50 graphs).

Finally, we evaluate the algorithms on the full data sets, see Figures 1 and 10 for graphical snapshots. On these graphs we cannot feasibly determine the optimum, but can compare GreedySelection and TreeSchedule. In Fig. 9(b) we see that on Wuerzburg, the tree scheduling algorithm is consistently better than the greedy algorithm, but not by much. This is the case almost regardless of the choice of the root: the quality still depends on the chosen root, yet on this graph the tree scheduling algorithm dominates the greedy algorithm in all but 7 out of 2995 possible roots (the heaviest edge was, again, one of the dominating choices). The results on Dallas are similar. This is in stark contrast to the smaller instances discussed before (Fig. 9(a)). It appears that on larger instances, it becomes more important to do “smart” scheduling than it is to be (un)lucky with selecting the root. This shows that the full enumeration over all possible roots is not essential on large graphs. This is convenient since trying all m roots may easily become too costly in practice. On smaller graphs, however, where the algorithms are fast anyhow, testing all roots is worthwhile and dominates the greedy approach.

9. CONCLUSION & DISCUSSION

The solutions given by some of our approximation algorithms (Sec. 6) can be, in a sense, unreasonable: completely delete a particular area of the graph, before deleting anything else. We have two remarks about this. On the one hand, we give a heuristic (Sec. 3) and a different approximation algorithm (Sec. 7) and have found that they do give reasonable results in practice. On the other hand, it does suggest that our current problem statement does not model all relevant criteria of map generalization: if it is possible for a solution to be evaluated as good, even though it is actually bad, then we may need to adjust the objective function and/or constraints. We are not deterred by this state of affairs, since it is only natural that the correct model is not immediately clear when first introducing a rigorous op-

1http://download.geofabrik.de/
2http://gis.dallascityhall.com/
3We have multiplied the weight of road segments marked primary, EXPY, FWY or TPKE by a factor 5, and road segments marked secondary, HwY or BLVD by a factor 3.
timization approach to a new topic. Future work will have to address these issues.

For example, in addition to global connectivity, we would like to ensure that, at every scale, the edges belonging to the same stroke form a connected path. This would help readability of the network. Furthermore, we would like to ensure that, at every scale, the graph nicely spans the map plane, that is, it must not leave large parts of the map empty. Like in the literature on static map generalization, it seems beneficial to formalize these (and other) considerations, so that proper optimization techniques may be applied.

10. REFERENCES

Figure 10: Three steps of TreeSchedule’s solution on a 10^5-vertex subgraph of Dallas. Edge-weights are set using PageRank and road class as described in Sec. 8; due to the scale of the map, edge weight is not indicated.